(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 199201 Roll No.

B.Tech.

(SEM.II) THEORY EXAMINATION 2013-14

MATHEMATICS-II

Time: 3 Hours

Total Marks: 100

Note: - Attempt all Sections.

 Attempt all parts of this question. Each part carries 2 marks. (10×2=20)

SECTION-A

- (a) Find the general solution of $(2D + 1)^2y = 0$.
- (b) Form a differential equation if its general solution is $y = Ae^{x} + Be^{-x}$.
- (c) If L {F (t)} = $\frac{e^{-1/s}}{s}$, find the L {e^{-t} F (3t)}.
- (d) Find Laplace transform of $\sin 2t u (t-\pi)$.
- (e) Express $2x^2 + x + 3$ in terms of Legendre polynomials.
- (f) If $J_{1/2}(x) = \sqrt{\frac{m}{\pi x}}$ sinkx, then find m and k.

(g) If
$$F(x) = \begin{cases} -x, & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$$
 find $F(0)$.

- (h) Solve $(D^2 + DD') z = 0$.
- (i) Classify the following partial differential equation $(f_{xx} + 2f_{xy} + 4f_{yy}) = 0$.

Write down the telegraph equations.

SECTION-B

Note: Attempt any three parts of this question. Each part carries equal marks. $(3 \times 10 = 30)$

(a) Solve the following differential equations by the method of variation of parameters

$$y_2 - 3y_1 + 2y = e^{2x} + x^2$$

- $y_2 3y_1 + 2y = e^{2x} + x^2.$ (b) Solve in series $(x + x^2 + x^3) \frac{d^2y}{dx^2} + 3x^2 \frac{dy}{dx} 2y = 0$.
- (c) Solve the equation by Laplace transform

$$(D^3 - D^2 - D + 1) y = 8 \text{ te}^{-t}$$
; $y(0) = 0$, $y'(0) = 1$, $y''(0) = 0$

- (d) Obtain Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi}, 0 \le x \le \pi \end{cases}$
- (e) Find the deflection of the vibrating string of unit length whose end points are fixed if the initial velocity is zero and the initial deflection given by

$$u(x, 0) = \begin{cases} 1, & 0 \le x \le \frac{1}{2} \\ -1, & \frac{1}{2} \le x \le 1 \end{cases}$$

SECTION-C

Note: Attempt any two parts from each question of this section. Each part carries equal marks. $(2 \times 5 \times 5 = 50)$

- (a) Solve the system of simultaneous differential equations: $\frac{dx}{dt} = -4 (x + y), \frac{dx}{dt} + 4 \frac{dy}{dt} = -4 y$ with conditions x(0) = 1, y(0) = 0
 - (b) Solve the differential equation: $\frac{d^2y}{dx^2} + y = \cosh 2x + x^3$

Solve the differential equation by changing the independent variable:

$$x^6 \frac{d^2 y}{dx^2} + 3x^5 \frac{dy}{dx} + a^2 y = \frac{1}{x^2}$$

- (a) Solve the differential equation in series: $y'' + xy' + (x^2 + 2)y = 0$
 - (b) Prove that:

() (

$$\int_{-1}^{1} (x^2 - 1) P_{n+1} P'_n dx = \frac{2n (n+1)}{(2n+1) (2n+3)}$$

(c) Prove that:

$$J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$$

- Find the Laplace transform of the following functions:
 - te-cosh t

(ii)
$$\int_0^t e^t \frac{\sin t}{t} dt$$

(b) Find L⁻¹
$$\left[log \left(\frac{s^2 + 4s + 5}{s^2 + 2s + 5} \right) \right]$$

(c) Use convolution theorem to find
$$L^{-1}\left[\frac{16}{(s-2)(s+2)^2}\right]$$
.

6. (a) If
$$f(x) =\begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$

Hence show that

$$f(x) = \frac{4}{\pi} \left[\sin x - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \dots \right]$$

(b) Solve $(y + zx) p - (x + yz) q = x^2 - y^2$

(c) Solve
$$\frac{\partial^3 z}{\partial x^3} - 7 \frac{\partial^3 z}{\partial x \partial y^2} - 6 \frac{\partial^3 z}{\partial y^3} = \sin(x + 2y)$$

7. (a) Use method of separation of variables to solve the equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{\partial \mathbf{u}}{\partial \mathbf{y}} + 2\mathbf{u}$$

- (b) Solve $u_t = a^2 u_{xx}$ under the conditions u(0, t) = 0, u(l, t) = 0 (t > 0) and initial condition u(x, 0) = x(10-x), l being the length of the bar.
- (c) A square plate is bounded by the lines x = 0, y = 0, x = 20, y = 20. Its faces are insulated. The temperature along the upper horizontal edge is given by u(x, 20) = x(20 x) when 0 < x < 20 while other three edges are kept at 0° C. Find the steady state temperature in the plate.